翻訳と辞書 |
Skorokhod's embedding theorem : ウィキペディア英語版 | Skorokhod's embedding theorem In mathematics and probability theory, Skorokhod's embedding theorem is either or both of two theorems that allow one to regard any suitable collection of random variables as a Wiener process (Brownian motion) evaluated at a collection of stopping times. Both results are named for the Ukrainian mathematician A.V. Skorokhod. ==Skorokhod's first embedding theorem==
Let ''X'' be a real-valued random variable with expected value 0 and finite variance; let ''W'' denote a canonical real-valued Wiener process. Then there is a stopping time (with respect to the natural filtration of ''W''), ''τ'', such that ''W''''τ'' has the same distribution as ''X'', : and :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Skorokhod's embedding theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|